skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Jiabin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study how representation learning can im- prove the learning efficiency of contextual bandit problems. We study the setting where we play T contextual linear bandits with dimension d si- multaneously, and these T bandit tasks collec- tively share a common linear representation with a dimensionality of r ≪ d. We present a new algorithm based on alternating projected gradi- ent descent (GD) and minimization estimator to recover a low-rank feature matrix. Using the pro- posed estimator, we present a multi-task learning algorithm for linear contextual bandits and prove the regret bound of our algorithm. We presented experiments and compared the performance of our algorithm against benchmark algorithms 
    more » « less